At Northwestern
†equal contribution
Preprints
Covalent Reprogramming of Kinase Binders to Modulate Protein Homeostasis.
Mozes C, Jin X, Campos MA, Zhou C, Zhang X*.
bioRxiv. [DOI: 10.1101/2025.11.30.691461]
Systematic characterization of cancer-associated SPOP mutants reveals novel and reprogrammable degradative activities.
Caldwell AG, Parmar H, Jin X, Zhou C, Zhang X*.
bioRxiv. [DOI: 10.1101/2025.11.21.689851]
Expanding the repertoire of chemically induced covalent neoantigens.
Zhou C, Huang W, Jin X, Wu H, McGregor LM, Schirle M, Zhang C*, Zhang X*.
bioRxiv. [DOI: 10.1101/2025.07.08.663715]
Heterobifunctional proteomimetic polymers for targeted protein degradation.
Wang MM, Truica MI, Gattis BS, Oktawiec J, Sagar V, Basu AA, Bertin PA, Zhang X, Abdulkadir SA, Gianneschi NC.
bioRxiv. [DOI: 10.1101/2025.03.07.641543]
2025
58. Harnessing the FBXW7 somatic mutant R465C for targeted protein degradation.
Basu AA, Zhang C, Rouhimoghadam M, Vasudevan A, Reitsma, JM, Zhang X*.
J. Am. Chem. Soc., 147 (2025) 6108-6115.
57. CRISPR screen identifies BAP1 as a deubiquitinase regulating SPIN4 stability.
Sanchez A, Zhou C, Tulaiha R, Ramirez F, Wang L, Zhang X*.
Biochemistry. 64 (2025) 4318-4326.
56. Exploiting the DCAF16-SPIN4 interaction to identify DCAF16 ligands for PROTAC development.
Riha IA, Campos MA, Jin X, Wang FY, Zhang C, Dunne SF, Cravatt BF, Zhang X*.
RSC Med. Chem., 16 (2025) 892-906.
55. Discovery of DCAF16 binders for targeted protein degradation.
Campos MA, Riha IA, Zhang C, Mozes C, Scheidt KA*, Zhang X*.
ACS Chem. Biol., 20 (2025) 479-488.
54. Implications of frequent hitter E3 ligases in targeted protein degradation screens.
Zhang X*, Simon GM, Cravatt BF*.
Nat. Chem. Biol., 21 (2025) 474-481.
53. Succinate drives gut inflammation by promoting FoxP3 degradation through a molecular switch.
Wang H, Hu D, Cheng Y, Gao Q, Liu K, Mani NL, Tang AY, Iyer R, Gao B, Sun L, Zhou Q, Yu Q, Weinberg SE, Zhang X, Cong Y, Dulai PS, Zhang Y, Liu Z, Fang D.
Nat. Immunol., 26 (2025) 866-880.
52. Covalent Targeting of Splicing in T Cells.
Scott KA, Kojima H, Ropek N, Warren C, Zhang TL, Hogg SJ, Sanford H, Webster C, Zhang X, Rahman J, Melillo B, Cravatt BF, Lyu J, Abdel-Wahab O, Vinogradova EV.
Cell Chem. Biol., 32 (2025) 1-18.
51. Cysteine addiction in drug resistant glioblastoma and therapeutic targeting with designer selenium compounds.
Tiek D, Song X, Wu R, Yu X, Walker M, Mao Y, Sisbarro D, He Q, Magassa A, Singh A, Lu J, Sharma AK, Miska J, Hu B, Bonini MG, Zhang X, Cheng SY.
Neuro. Oncol., 2025. [DOI: 10.1093/neuonc/noaf265]
50. Ketone drink enhances therapeutic efficacy in prostate cancer by targeting EZH2.
Yum C, Schaefer RA, Wang R, Wang TY, Lu X, Liu Q, Ren Y, Meng Q, Yang Y, Zhang X, Xiong Y, Yu X, Zhang X, Jin J, Dong X, Yi Y, Yang R, Cao Q.
Oncogenesis, 14 (2025) 24.
49. 33 Unresolved Questions in Nanoscience and Nanotechnology.
Mirkin CA, et al.
ACS Nano, 19 (2025) 31933-31968.
48. Protein-like Polymers Targeting Keap1/Nrf2 as Therapeutics for Myocardial Infarction.
Mesfin JM, Carrow KP, Chen A, Hopps MP, Holm JJ, Lyons QP, Nguyen MB, Hunter JD, Magassa A, Wong EG, Reimold K, Paleti SN, Gardner E, Thompson MP, Luo CG, Zhang X, Christman KL, Gianneschi NC.
Adv. Mater., (2025) 2417885.
2024
47. A CRISPR activation screen identifies FBXO22 supporting targeted protein degradation.
Basu AA, Zhang C, Riha IA, Magassa A, Campos MA, Caldwell AG, Ko F, Zhang X*.
Nat. Chem. Biol., 20 (2024) 1608-1616.
Highlight
“F-boxing substrates away” Nat. Chem. Biol., (2024) doi.org/10.1038/s41589-024-01666-6.
“Developing New Methods for Targeted Protein Degradation”. Northwestern Medicine News Center.
46. A platform for mapping reactive cysteines within the immunopeptidome.
Zhang C†, Zhou C†, Magassa A, Jin X, Fang D, Zhang X*.
Nat. Commun., 15 (2024) 9698. (Editors’ Highlights “Structural biology, biochemistry and biophysics”)
Highlight
“Unlocking New Possibilities for Cancer Immunotherapy”. Northwestern Medicine News Center.
45. Chemical Proteomics–Guided Discovery of Covalent Ligands for Cancer Proteins.
Zhang X*, Cravatt BF*.
Annu. Rev. Cancer Biol.. 8 (2024)155-175
44. Quantitative proteomics and applications in covalent ligand discovery.
Basu AA, Zhang X*.
Front. Chem. Biol., 3 (2024) 1352676.
43. Inhibiting the Keap1/Nrf2 Protein-Protein Interaction with Protein-Like Polymers.
Carrow KP, Hamilton HL, Hopps MP, Li Y, Qiao B, Payne NC, Thompson MP, Zhang, X, Magassa A, Fattah M, Agarwal S, Vincent MP, Buyanova M, Bertin PA, Mazitschek R, de la Cruz MO, Johnson DA, Johnson JA, Gianneschi NC.
Adv. Mater., 36 (2024) 2311467.
2023
42. Rational Design of Highly Potent and Selective Covalent MAP2K7 Inhibitors.
Kim DR, Orr MJ, Kwong AJ, Deibler KK, Munshi HH, Bridges CS, Chen TJ, Zhang X, Lacorazza HD and Scheidt KA.
ACS Med. Chem. Lett., 14 (2023) 606-613.
41. Insights and Future Perspectives of Covalent Protein Degraders.
Zhang X*.
Inducing Targeted Protein Degradation (Wiley-VCH). (2023) 215-243.
2022
40. PCNA degradation exhibits superior pharmacological effects over stoichiometric inhibition.
Basu AA, Riha IA, Zhang X*.
Cell Chem. Biol., 29 (2022) 1571-1573.
39. Targeted Protein Degradation by Electrophilic PROTACs that Stereoselectively and Site-Specifically Engage DCAF1.
Tao Y*, Remillard D, Vinogradova EV, Yokoyama M, Banchenko S, Schwefel D, Melillo B, Schreiber SL, Zhang X* and Cravatt BF*.
J. Am. Chem. Soc., 14 (2022) 18688-18699.
38. Expanding the landscape of E3 ligases for targeted protein degradation.
Kramer LT and Zhang X*.
Curr. Res. Chem. Biol., 2 (2022) 1-5.
Prior to Northwestern
37. Garnar-Wortzel L, Bishop TR, Kitamura S, Milosevich N, Asiaban JN, Zhang X, Zheng Q, Chen E, Ramos AR, Ackerman CJ, Hampton EN, Chatterjee AK, Young TS, Hull MV, Sharpless KB, Cravatt BF, Wolan DW and Erb MA. Chemical inhibition of ENL/AF9 YEATS domains in acute leukemia. ACS Cent. Sci., 7 (2021) 815-830
36. Zhang X*, Luukkonen LM, Eissler CL, Crowley VM, Yamashita Y, Schafroth MA, Kikuchi S, Weinstein DS, Symons KT, Nordin BE, Rodriguez JL, Wucherpfennig TG, Bauer L, Dix MM, Stamos D, Kinsella TM, Simon GM, Baltgalvis KA and Cravatt BF*. DCAF11 supports targeted protein degradation by electrophilic proteolysis-targeting chimeras. J. Am. Chem. Soc., 143 (2021) 5141-5149.
Highlight
“Electrophilic Screening Platforms for Identifying Novel Covalent Ligands for E3 Ligases” Biochemistry, 2021.
35. Zhang X*, Thielert M, Li H and Cravatt BF*. SPIN4 is a principal endogenous substrate of the E3 ubiquitin ligase DCAF16. Biochemistry. 60 (2021) 637-642.
Highlight
“Assembling a Robust Workflow for Characterizing Endogenous E3 Ligase Substrates” Biochemistry, 2021.
34. Zhang X*. Chemical Proteomics for Expanding the Druggability of Human Disease. ChemBioChem, 21 (2020) 1-3.
33. Vinogradova EV, Zhang X, Remillard D, Lazar DC, Suciu RM, Wang Y, Bianco G, Yamashita Y, Crowley VM, Schafroth MA, Yokoyama M, Konrad DB, Lum KM, Simon GM, Kemper EK, Lazear MR, Yin S, Blewett MM, Dix MM, Nguyen N, Shokhirev MN, Chin EN, Lairson LL, Melillo B, Schreiber SL, Forli S, Teijaro JR, Cravatt BF. An Activity-Guided Map of Electrophile-Cysteine Interactions in Primary Human Immune Cells. Cell, 182 (2020) 1-18.
32. Yamashita Y, Vinogradova EV, Zhang X, Suciu RM, Cravatt BF. A chemical proteomic probe for the mitochondrial pyruvate carrier complex. Angew. Chem. Int. Ed. Engl., 59 (2019) 1-5.
31. Zhang X*, Crowley VM, Wucherpfennig TG, Dix MM, Cravatt BF*. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol., 15 (2019) 737-746.
Highlight
“Stick it to E3s” Nat. Chem. Biol., 15 (2019) 655-656.
“Greatest hits” Nat. Chem. Biol., 16 (2020) 600-603.
“Chemoproteomic-Driven Discovery of Covalent PROTACs” Biochemistry, 59 (2020) 128-129.
F1000Prime recommendation article. 28 Jun 2019; 10.3410/f.735998607.793561779.
30. Miller SP, Maio G, Zhang X, Badillo Soto FS, Zhu J, Ramirez SZ and Lin H. A proteomic approach identifies isoform-specific and nucleotide-dependent RAS interactions. Mol. Cell Proteomics, 21 (2022) 100268.
29. Hong JY, Malgapo MIP, Liu Y, Yang M, Zhu C, Zhang X, Tolbert P, Linder ME and Lin H. High-Throughput Enzyme Assay for Screening Inhibitors of the ZDHHC3/7/20 Acyltransferases. ACS Chem. Biol., 16 (2021) 1318-1324.
28. Kosciuk T, Price IR, Zhang X, Zhu C, Johnson KN, Zhang S, Halaby SL, Komaniecki GP, Yang M, DeHart CJ, Thomas PM, Kelleher NL, Fromme JC, Lin H. NMT1 and NMT2 are Lysine Myristoyltransferases Regulating the ARF6 GTPase Cycle. Nat. Commun., 11 (2020) 1-17.
27. Spiegelman NA, Zhang X, Jing H, Cao J, Kotliar IB, Aramsangtienchai P, Wang M, Tong Z, Rosch KM, Lin H. SIRT2 and Lysine Fatty Acylation Regulate the Activity of RalB and Cell Migration. ACS Chem. Biol., 14 (2019) 2014-2023.
26. Latifkar A, Ling L, Hingorani A, Johansen E, Clement A, Zhang X, Hartman J, Fischbach C, Lin H, Cerione RA, Antonyak MA. Loss of Sirtuin 1 Alters the Secretome of Breast Cancer Cells by Impairing Lysosomal Integrity. Dev. Cell, 49 (2019) 1-16.
25. Spiegelman NA, Hong JY, Hu J, Jing H, Wang M, Price IR, Cao J, Yang M, Zhang X, Lin H. A Small Molecule SIRT2 Inhibitor that Promotes K-Ras4a Lysine Fatty-acylation. ChemMedChem,14 (2019) 744-748.
24. Cao J, Sun L, Aramsangtienchai P, Spiegelman NA, Zhang X, Huang W, Seto E, Lin H. HDAC11 regulates type I interferon signaling through defatty-acylation of SHMT2. Proc. Natl. Acad. Sci., 116 (2019) 5487-5492.
23. Hong JY, Zhang X, Lin H. HPLC-Based Enzyme Assays for Sirtuins. Methods Mol. Biol., 1813 (2018) 225-234.
22. Spiegelman NA, Price IR, Jing H, Wang M, Yang M, Cao J, Hong JY, Zhang X, Aramsangtienchai P, Sadhukhan S, Lin H. Direct Comparison of SIRT2 Inhibitors: Potency, Specificity, Activity-Dependent Inhibition, and On-Target Anticancer Activities. ChemMedChem, 13 (2018) 1-6.
21. Zhang X, Cao J, Miller SP, Jing H, Lin H. Comparative nucleotide-dependent interactome analysis reveals shared and differential properties of KRas4a and KRas4b. ACS Cent. Sci., 4 (2018) 71-80.
Highlight
“Research probes key protein’s role in cancer cell growth.” Cornell Chronicle, January 24, 2018.
20. Jiang H†, Zhang X†, Chen X†, Aramsangtienchai P†, Tong Z†, Lin H. Protein lipidation: Occurrence, mechanisms, biological functions, and enabling technologies. Chem. Rev., 118 (2018) 919-988.
19. Jing H†, Zhang X†, Wisner SA, Chen X, Spiegelman NA, Linder ME, Lin H. SIRT2 and lysine fatty acylation regulate the oncogenic activity of K-Ras4a. eLife, 6 (2017) e32436.
Highlight
“Research probes key protein’s role in cancer cell growth.” Cornell Chronicle, January 24, 2018.
“Research probes key protein’s role in cancer cell growth.” The Cornell Daily Sun, March 30, 2018.
18. Zhang X, Spiegelman NA, Nelson OD, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. eLife, 6 (2017) e25158.
Highlight
“SIRT6’s ability to suppress cancer cell growth is explained.” Cornell Chronicle, May 10, 2017.
17. Jin J, He B, Zhang X, Lin H, Wang Y. SIRT2 Reverses 4-Oxononanoyl Lysine Modification on Histones. J. Am. Chem. Soc., 138 (2016) 12304-12307.
16. Zhang X, Khan S, Jiang H, Antonyak MA, Chen X, Spiegelman NA, Shrimp JH, Cerione RA, Lin H. Identifying the functional contribution of the defatty-acylase activity of SIRT6. Nat. Chem. Biol., 12 (2016) 614-620.
Highlight
“Mutant enzyme study aids in understanding of sirtuin’s functions.” Cornell Chronicle, Jun 27, 2016.
15. Jiang H†, Zhang X†, Lin H. Lysine fatty acylation promotes lysosomal targeting of TNF-α. Sci. Rep., 6 (2016) 24371.
14. Tong Z, Wang Y, Zhang X, Kim DD, Sadhukhan S, Hao Q, Lin H. SIRT7 is activated by DNA and deacetylates histone H3 in the chromatin context. ACS Chem. Biol., 11 (2016) 742-747.
13. He B†, Hu J†, Zhang X†, Lin H. Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors. Org. Biomol. Chem., 12 (2014) 7498-7502.
12. Zhang X, Song Z, Xu J, Ma Z. Improving the NQO1-Inducing Activities of Phenolic Acids from Radix Salvia miltiorrhiza: a Methylation Strategy. Chem. Biol. Drug Des., 78 (2011) 558-566.
11. Zhang X, Luo L, Ma Z. A deuterium-labelling mass spectrometry–tandem diode-array detector screening method for rapid discovery of naturally occurring electrophiles. Anal. Bioanal. Chem., 400 (2011) 3463-3471.
10. Xu J, Lu J, Sun F, Zhu H, Wang L, Zhang X, Ma Z. Terpenoids from Tripterygium wilfordii. Phytochemistry, 72 (2011) 1482-1487.
9. Zhang X, Ma Z. Characterization of bioactive thiophenes from the dichloromethane extract of Echinops grijisii as Michael addition acceptors. Anal. Bioanal. Chem., 397 (2010) 1975-1984.
8. Zhang X, Zhao X, Ma Z. PYDDT, a novel phase 2 enzymes inducer, activates Keap1-Nrf2 pathway via depleting the cellular level of glutathione. Toxicol. Lett., 199 (2010) 93-101.
7. Zhang X, Ma Z. A new fluorescein isothiocyanate-based screening method for the rapid discovery of electrophilic compounds. Anal. Methods, 2 (2010) 1472-1478.
6. Shi J†, Zhang X†, Ma Z, Zhang M, Sun F. Characterization of Aromatase Binding Agents from the Dichloromethane Extract of Corydalis yanhusuo Using Ultrafiltration and Liquid Chromatography Tandem Mass Spectrometry. Molecules, 15 (2010) 3556-3566.
5. Shi J†, Zhang X†, Jiang H. 2-(Penta-1, 3-diynyl)-5-(3, 4-dihydroxybut-1-ynyl) thiophene, a Novel NQO1 Inducing Agent from Echinops grijsii Hance. Molecules, 15 (2010) 5273-5281.
4. Wang L, Sun F, Zhang X, Ma Z, Cheng L. A secoiridoid with quinone reductase inducing activity from Cortex fraxini. Fitoterapia, 81 (2010) 834-837.
3. Cheng L, Zhang X, Zhang M, Zhang P, Song Z, Ma Z, Cheng Y, Qu H. Characterization of chemopreventive agents from the dichloromethane extract of Eurycorymbus cavaleriei by liquid chromatography–ion trap mass spectrometry. J. Chromatogr. A, 1216 (2009) 4859-4867.
2. Ma Z, Zhang X. Seven new benzeneacetic acid derivatives and their quinone reductase activity from Eurycorymbus cavaleriei. Phytochem. Lett., 2 (2009) 152-158.
1. Ma Z, Zhang X, Cheng L, Zhang P. Three lignans and one coumarinolignoid with quinone reductase activity from Eurycorymbus cavaleriei. Fitoterapia, 80 (2009) 320-326.
